
Visualizing Sorting Algorithms

Leon Rische

[2017-12-10 Sun 12:00]

Contents

1 Bubble Sort 1

2 Selection Sort 2

3 Insertion Sort 3

4 Quick Sort 4

5 Heap Sort 5

• Sorting Algorithms

Mike Bostock created some great visualizations of sorting algorithms with
D3.js and I wondered how hard it would be to implement something similar
from scratch.

I’ve generated images for five different algorithms, each sorting an array
of 15 numbers in sorted, reversed and randomized order.

1 Bubble Sort

language=Ruby,label= ,caption= ,captionpos=b,numbers=none class Bub-
bleSort < Sort def sort swapped = true

while swapped swapped = false (1...@array.size).each do |i| if @array[i -
1] > @array[i] swap(i - 1, i) swapped = true end end end end end

• Best case O(n)

• Average case O(n2)

• Worst case O(n2)

1

file:///home/leon/org/deft/sorting_algorithms.org
https://bost.ocks.org/mike/algorithms/
https://bost.ocks.org/mike/algorithms/


1.1 Sorted

If the input array is already sorted, the algorithm is done after one iteration
and needs so swaps.

[width=.9]images/sorting/BubbleSort-sorted

1.2 Reversed

The extreme opposite happens when the array is in reversed order, the first
element has to "bubble up" to the last index of the array, the next one to
next-to-last, . . .

[width=.9]images/sorting/BubbleSort-reversed

1.3 Random

[width=.9]images/sorting/BubbleSort-random

2 Selection Sort

language=Ruby,label= ,caption= ,captionpos=b,numbers=none class Se-
lectionSort < Sort def sort (0...(@array.size - 1)).each do |j| imin = j((j +
1)...@array.size).eachdo|i|imin = iif@array[i] < @array[imin]end

swap(j, imin)ifimin! = jendendend

• Best case O(n2)

• Average case O(n2)

• Worst case O(n2)

Selection sort iterates over the array, looks for the smallest element in
the rest of the array and swaps it to the current position.

2.1 Sorted

Just like bubble sort, no swaps are used for a sorted array.

[width=.9]images/sorting/SelectionSort-sorted

2



2.2 Reversed

If the array is in reversed order, the last element is swapped to the first
position, the next-to-last to the second position, . . . , leading to a nice triangle
shape.

[width=.9]images/sorting/SelectionSort-reversed

2.3 Random

Just from looking at these images, it might seem like selection sort is way
better than bubble sort because the images are smaller. In the real world, the
performance of a sorting algorithms depends on the number of comparisons
made, too, while the size of these images depends only on the number of
swaps.

[width=.9]images/sorting/SelectionSort-random

3 Insertion Sort

language=Ruby,label= ,caption= ,captionpos=b,numbers=none class In-
sertionSort < Sort def sort i = 1 while i < @array.size j = i while j > 0
@array[j - 1] > @array[j] swap(j, j - 1) j -= 1 end i += 1 end end end

• Best case O(n)

• Average case O(n2)

• Worst case O(n2)

3.1 Sorted

[width=.9]images/sorting/InsertionSort-sorted

3.2 Reversed

[width=.9]images/sorting/InsertionSort-reversed

3.3 Random

[width=.9]images/sorting/InsertionSort-random

3



4 Quick Sort

language=Ruby,label= ,caption= ,captionpos=b,numbers=none class Quick-
Sort < Sort def medianofthree(left, right)center = (left+right)/2[left, right, center].sortby|index|@array[index][1]end

def sort(left = 0, right = @array.size - 1) return unless left < right
pivot = medianofthree(left, right)center = partition(left, right, pivot)
sort(left, center - 1) sort(center + 1, right) end
Reorder the elements in the array so that the elements less that the

pivot element are to its left and the other ones are to its right, then
return the new index of the pivot element. def partition(left, right, pivot)
pivotvalue = @array[pivot]swap(pivot, right)i = left− 1

(left...right).each do |j| if @array[j] <= pivotvaluei+ = 1swap(i, j)endend
swap(i + 1, right) i + 1 end end

• Best case O(n log n)

• Average case O(n log n)

• Worst case O(n2)

This is not your garden-variety quicksort, it swaps the elements in-place
instead of splitting the input array into two smaller ones, recursively sorting
both and merging them again into a big sorted array.

The pivot element is selected by calculating the median of the first, last
and center element.

4.1 Sorted

Here you can see how the pivot elements are selected and swapped to the
end of the array. Because the elements are already sorted, each one is only
swapped with itself, leading to a long section of straight lines. Then the
pivot element is swapped to its correct position and stays there for the rest
of the steps.

If you look closely, you can see how after that the right half of the array
is sorted (recursively), then the left.

[width=.9]images/sorting/QuickSort-sorted

4.2 Reversed

If the array is reversed, a lot of swaps are needed to partition the array each
time.

[width=.9]images/sorting/QuickSort-reversed

4



4.3 Random

In the average case quick sort needs fewer steps that the previous algorithms.
The worst case happens if each step the pivot element the pivot element is
the biggest or smallest element of the subarray, so that one of the partitions
is empty.

[width=.9]images/sorting/QuickSort-random

5 Heap Sort

This is the most complicated one of the algorithms presented here, but the
one with the best worst-case complexity.

Heap sort works by reordering the elements of the array so that they
form a heap (a way to store binary trees in arrays) and then searching for
the smallest element in logarithmic time.

language=Ruby,label= ,caption= ,captionpos=b,numbers=none class
HeapSort < Sort def sort heapify

to = @array.size - 1 while to > 0 swap(to, 0) to -= 1 siftdown(0, to)endend
def heapify from = indexparent(@array.size−1)whilefrom >= 0siftdown(from,@array.size−

1)from− = 1endend
def siftdown(from, to)root = from
while indexleftchild(root) <= tochild = indexleftchild(root)swap =

@array[root] < @array[child]?child : rootswap = child + 1ifchild + 1 <=
to@array[swap] < @array[child+ 1]

return if swap == root
swap(root, swap) root = swap end end
def indexparent(i)(i− 1)/2end
def indexleftchild(i)2 ∗ i+ 1endend

• Best case O(n log n)

• Average case O(n log n)

• Worst case O(n log n)

5.1 Sorted

[width=.9]images/sorting/HeapSort-sorted

5



5.2 Reversed

[width=.9]images/sorting/HeapSort-reversed

5.3 Random

[width=.9]images/sorting/HeapSort-random

6


	Bubble Sort
	Selection Sort
	Insertion Sort
	Quick Sort
	Heap Sort

