
Quadtree Grammars

Leon Rische

[2019-07-17 Wed 23:23]

Contents

1 Introduction 1

2 A Framework for Experimentation 3

3 Systems With One Rule 4

4 Systems With Two Rules 8

5 Chance and Necessity 12

6 Letting the Computer do the Work 15

7 Conclusion 43

8 References 44

1 Introduction

A quadtree is a tree where each node has exactly four children. One ap-
plication is storing 2D data by recursively dividing larger squares into four
quadrants (top-left, top-right, bottom-left, bottom-right) and storing these
in the tree. Once some condition is fulfilled, e.g. all the pixels in the square
have a similar color, the process stops and the square is stored as a leaf.

While experimenting with operations on images compressed this way, a
bug in my code produced this image:

1



As a reference, the original images looks like this:

2



Why is there a Sierpinsky Triangle hidden in there?
After a bit of debugging, I found out that the upper right corner of each

node was not drawn.
The broken images nicely shows how the images is "compressed" by stor-

ing parts with the same color as larger squares.
In the upper left, a piece of sky is stored as a big square whereas on the

container below the sierpinsky triangles are very visible because the cells of
the quadtree are so small.

2 A Framework for Experimentation

What other kinds of patterns and fractals can be generated this way? For
further experimentation a bit of tooling is needed.

I’m interested in programming languages, and finding efficient ways to
express ideas (see Kolmogorov Complexity) so the solution is obvious: A

3



small language for defining patterns.
Note: Here, the notion of Kolmogorov complexity — the length of the

shortest program necessary to generate some images — is a fuzzy. Which
parts of the software should be counted? The rust program? The png
library? What about the rust compiler itself?

A pattern is a list of four "pattern elements", one for each quadrant of
the quadtree. These element can either be constant colors or references to
other patterns.

This forms a subset of the context-free grammars (Chomsky Type-2), the
ones with exactly four terminals and non-terminals on the right-hand-side.

In addition to that, each reference to other patterns needs a fallback color
to be used once the cells are to small to be divided.

TODO: The code can be found on github TODO: example usage

3 Systems With One Rule

Ignoring rotations and different colors, there are only a handful of systems
with a single rule.

S -> white green blue S | white

4



S -> S red green S | red

5



S -> red S yellow S | yellow

6



S -> S blue S S | white

7



There is the Sierpinski Triangle again.

4 Systems With Two Rules

Adding more rules, the number of possible grammars quickly grows.

S -> T red green T | red
T -> blue S S yellow | blue

8



Small changes to the rules lead to very different images.

S -> red T green T | red
T -> S blue S yellow | blue

9



S -> red T T green | red
T -> yellow S S blue | blue

10



S -> brown T T T | brown
T -> yellow S S S | yellow

11



5 Chance and Necessity

These rule systems are already pretty powerful but I’d like to have a bit
more variation.

An easy way to do this is allowing multiple rules with the same left-hand-
side (the part before the ->) and randomly choosing one on each iteration.

S -> blue S S yellow | yellow
S -> S red green S | red

12



S -> S S S white | white
S -> S S S blue | blue
S -> S S S green | green
S -> S S S red | red
S -> S S S yellow | yellow

13



Now the RuleSet contains a list of patters for each index and each time
one is chosen at random.

language=rust,label= ,caption= ,captionpos=b,numbers=none impl In-
dex<usize> for RuleSet type Output = Pattern;

fn index(self, i: usize) -> Pattern let mut rng = self.rng.borrowmut(); letj =
rng.genrange(0, self.rules[i].len()); self.rules[i][j]

S -> S S S yellow | yellow
S -> S blue S S | blue
S -> white S S red | red

14



6 Letting the Computer do the Work

At this point, the hardest part is finding sets of rules that produce interesting
images. Luckily, that’s easy to automate by generating random rule sets and
choosing the ones that look the best.

When generating a branch of rule, the probability a reference to another
rule is chosen is 75%, otherwise a constant color is used.

For rules with at least one constant color, the last of them is used as
fallback color, otherwise a random one is generated.

Due to the way the systems are generated, there is a chance some of the
rules can’t be reached from the starting symbol (S in the previous sections,
0 for the randomly generated ones).

Here are a few of my favorites with different color pallets and parameters.

15



6.1 Black & White, 2 to 4 rules with 1 branch

0 -> 1 2 2 0 | black
1 -> black 1 1 black | black
2 -> white 2 2 black | black
3 -> 3 1 white 2 | white

0 -> white 1 0 0 | white
1 -> 1 black 1 white | white

16



0 -> 1 black 0 1 | black
1 -> 0 1 white 1 | white

17



0 -> 1 0 black 1 | black
1 -> 1 0 white 1 | white

18



0 -> black 0 2 black | black
1 -> 2 0 white 2 | white
2 -> 0 1 3 2 | black
3 -> 3 1 white 2 | white

19



0 -> 2 0 2 1 | white
1 -> black 2 2 1 | black
2 -> 2 0 0 1 | black

20



6.2 base16 colors + white, 2 to 4 rules with 1 branch

0 -> yellow 0 1 red | red
1 -> white 1 1 cyan | cyan

21



0 -> 1 2 3 2 | green
1 -> red 3 0 purple | purple
2 -> 3 yellow 3 0 | yellow
3 -> red white brown brown | brown

22



0 -> 1 blue 1 0 | blue
1 -> 0 white 0 green | green

23



0 -> 1 white blue 1 | blue
1 -> 0 brown 0 0 | brown
2 -> 0 2 yellow 1 | yellow

24



0 -> 0 0 1 0 | yellow
1 -> yellow 1 orange brown | brown

25



0 -> 1 0 0 0 | yellow
1 -> blue 2 1 1 | blue
2 -> 0 cyan 1 1 | cyan

26



0 -> 1 3 2 2 | orange
1 -> 1 2 0 brown | brown
2 -> 3 white red 3 | red
3 -> 3 3 1 1 | white

27



0 -> 1 1 1 1 | cyan
1 -> 0 0 0 1 | white

28



6.3 base16 colors + white, 2 to 4 rules with 1 or 2 branches

0 -> 0 orange 1 0 | orange
1 -> 1 white cyan 1 | cyan

29



0 -> 0 brown 1 0 | brown
1 -> 0 1 1 yellow | yellow

30



0 -> 1 2 1 2 | red
0 -> 1 0 orange 2 | orange
1 -> blue brown white 0 | white
1 -> 0 2 0 brown | brown
2 -> 2 1 1 2 | orange
2 -> 1 brown white blue | blue

31



0 -> 1 0 2 1 | white
1 -> 0 brown 1 1 | brown
2 -> 3 3 1 purple | purple
3 -> 2 3 3 0 | yellow
3 -> 1 0 white green | green

32



0 -> 0 0 1 0 | white
1 -> 0 1 0 2 | white
1 -> 1 brown 2 0 | brown
2 -> 1 1 cyan 2 | cyan

33



0 -> green 0 1 blue | blue
0 -> 0 yellow 0 1 | yellow
1 -> blue 0 1 purple | purple
1 -> 1 0 yellow 1 | yellow

34



0 -> 2 0 0 2 | red
0 -> 0 0 blue 2 | blue
1 -> 1 2 1 2 | green
2 -> 1 3 2 2 | orange
3 -> 1 white blue 2 | blue

35



0 -> 1 1 3 2 | blue
0 -> 0 yellow 3 2 | yellow
1 -> green 1 2 white | white
2 -> red 3 2 3 | red
2 -> blue white 0 2 | white
3 -> blue 3 3 cyan | cyan

36



0 -> 0 2 2 1 | white
0 -> 2 brown 0 1 | brown
1 -> 1 cyan 0 2 | cyan
2 -> blue 2 cyan yellow | yellow

37



0 -> 0 1 2 1 | green
1 -> 2 1 0 3 | yellow
1 -> 0 3 3 0 | yellow
2 -> 1 brown white 1 | white
3 -> 2 cyan 3 3 | cyan
3 -> 2 1 1 3 | blue

38



0 -> yellow 3 1 2 | yellow
1 -> white 3 white 3 | white
1 -> 0 0 3 3 | yellow
2 -> 1 1 3 brown | brown
3 -> 0 1 yellow 1 | yellow

39



0 -> 0 1 1 0 | blue
1 -> blue 1 white orange | orange
1 -> 0 1 1 yellow | yellow

40



0 -> brown 0 brown blue | blue
0 -> 1 purple 1 red | red
1 -> 0 white red orange | orange
2 -> 0 2 1 2 | orange
2 -> red blue 1 0 | blue

41



0 -> 0 0 0 1 | red
1 -> 2 1 2 yellow | yellow
2 -> 2 white green 2 | green

42



7 Conclusion

Looking back at my selection from the randomly generated rule sets, the
sweet spot seems to be systems with two or three rules, beyond that, the
images become to "chaotic".

It should be possible to define a taxonomy of patterns based patterns
that show up often, e.g. Sierpinski Triangles, diagonal divisions and recursive
binary partitions, but that has to wait for another time.

I’m working on a gallery page with a larger number of images for random
rule sets and the source code will be uploaded to github soon.

Another direction to take this would be using simple black and white
patterns, shapes and symbols so that the results can be plotted with a pen
plotter or using octrees to generate random fractal isometric structures.

If you have any questions about this process, write me at quadtree@<domain>.

43



8 References

For the images, I’ve used colors from the tomorrow-light variant of the base16
color scheme. Thanks Chris Kempson!

44

http://chriskempson.com/projects/base16/
http://chriskempson.com/projects/base16/

	Introduction
	A Framework for Experimentation
	Systems With One Rule
	Systems With Two Rules
	Chance and Necessity
	Letting the Computer do the Work
	Conclusion
	References

