Parsing Scheme with nom

Leon Rische

[2017-09-05 Tue 10:55]

Contents

1 Update, 2018-12-11] 1
2__Introductionl 2
2
4 Keywords| 3
5 Integers 9
[6_Booleans| 14
7 Chars| 15
I8 Combining Types| 15
9 esting 16
10 Strings 17
(11 Identifiers| 18

1 Update, 2018-12-11

With version 4 of nom |a lot of things changed so the code snippets won’t
work anymore and some descriptions might be outdated.

https://github.com/Geal/nom/blob/master/doc/upgrading_to_nom_4.md

2 Introduction

While trying to build a scheme interpreter in rust, I had a hard time getting
nom| to do what I want and understanding the difference between all the
macros it provides.

Don’t get me wrong, it’s an amazing framework, but most of the example
parsers are hard to understand, embedded in lots of unrelated code or out-
dated (e.g. using the chain! macro that has been replaced by do_parse!).

This is my attempt to create some kind of tutorial that starts with the
simplest building blocks, explores subtle differences between macros and
some mistakes to avoid, and hopefully results in working parser for an R5RS
Scheme.

3 Setup

1. Make sure you know how to set up and run rust projects crate, at the
time of writing this, the newest version is 3.2.0

2. Take a look at chapter 7 of RARS to see what the target grammar looks
like.

3. Create a new cargo (binary) project and install the following depen-
dencies

language—toml,label= ,caption= ,captionpos=b,numbers=none [depen-
dencies| nom = "3.2.0" rustyline = "1.0.0"
nom is a parser combinator framework, rustyline an implementation of
readline that we’re going to use to create a simple REPL for experimenting
with parsers.
language=rust,label= ,caption= ,captionpos=b,numbers=none // nom
defines a ton of macros, make them available here [macro, selexterncratenom; externcraterustyline;
use rustyline::error::ReadlineError; use rustyline::Editor;
fn main() let mut rl = Editor::<()>:mew(); if let Err(y = rl.loadyistory(” history.txt”)printin! (" No
The above code is a copy of the example on the [rustyline github page.
cargo run now yields a nice REPL ("RPL" would be more accurate).

No previous history.
>> foo

Line: foo

>> bar

Line: bar

https://github.com/Geal/nom
http://www.schemers.org/Documents/Standards/R5RS/r5rs.pdf
https://github.com/kkawakam/rustyline
https://en.wikipedia.org/wiki/Read\T1\textendash eval\T1\textendash print_loop

>> baz
Line: baz
>>
CTRL-C

4 Keywords

A good place to start is the section on syntactic and expression keywords.
We are going to use three nom macros to parse these, named!, tag! and
alt!.

Let’s see what the nom docs have to say about them:

named!: Makes a function from a parser combination

tag!, tag_s!: recognizes a specific suite of characters or bytes.
tag! ("hello") matches "hello"

alt!: try a list of parsers and return the result of the first suc-
cessful one

The heading describes alt! as a "Choice Combinator" which sounds
pretty smart and could be useful for name-dropping ;)
For now, don’t think too much about what the input and output types
of these functions are, we’ll get to it later.
language—rust,label= ,caption= ,captionpos=b,numbers=none named!(
syntacticgeyword, tag!(”else”));
fn parse(line: str) let res = syntacticyeyword(line.aspytes()); printin!(” Parsed:?” res);
fnmain() // ... match readline Ok(line) => rl.addpistoryentry(line); parse(line);, //...
First, we create a new parser syntactic_keyword that parses only the
string (tag!) "else", then a helper function that takes a line, feeds it to the
parser and prints out the result.
.as_bytes () is necessary because nom works on slices of bytes (u8) and
&str is a slice of chars (to support unicode).
In case you didn’t know, {:#7} is a formatting literal that can be used
to pretty-print the debug version of some variable.
cargo run

>> else
Parsed Done(

1,

T reformatted the output to keep it short

https://docs.rs/nom/3.2.0/nom/#macros
https://en.wikipedia.org/wiki/Name-dropping

[101, 108, 115, 101]
)
>> foo
Parsed Error(Tag)
>> elsefoo
Parsed Done (

[102, 111, 11117,

[101, 108, 115, 101]
)
>> els
Parsed Incomplete(Size(4))
>>

What appears to have happened?
All our parsers return a IResult, which, according to the docs, can be
one of the following types:

Done (I, 0) indicates a correct parsing, the first field containing
the rest of the unparsed data, the second field contains the parsed
data

Error (Err<E>) contains a Err, an enum that can indicate an
error code, a position in the input, and a pointer to another
error, making a list of errors in the parsing tree

Incomplete(Needed) Incomplete contains a Needed, an enum
than can represent a known quantity of input data, or unknown

This explains all the kinds of output we are seeing in the REPL.
[101, 108, 115, 101] is just a list of the bytes in "else", 101 is
ASCII for ’e’, etc.

e "else" can be parsed fully, the I of Done is empty.
e "foo" can not be parsed and returns an Error

e "elsefoo" can be parsed up to "foo", the result is a Done with I = "foo"
(as bytes) and 0 = "else"

e "els" could be parsed, but there is something missing (a fourth byte)

https://docs.rs/nom/3.2.0/nom/enum.IResult.html
https://en.wikipedia.org/wiki/ASCII

4.1 Other Return Types

Let’s add the remaining keywords:
language=rust,label= caption= ,captionpos=b,numbers=none named!(
syntacticyeyword, alt!(expressiongeyword|tag!(”else”)|tag!(” => 7)|tag!("define”)|tag! (" unquote™)|t
splicing”)));
named!(expressiongeyword, alt!(tag!(” quote”) |tag! (" lambda”)|tag!("if”)|tag!(” set!”) |tag! (" begin’)
Mtag!(Vlet”)|tag! (" do”)|tag!(” delay”) |tag! (" quasiquote”)));
This gives us a first glimpse at the power of parser combinators, because
alt! can combine any kind of parser (as long as the result types are the
same) we can create a second parser expression_keyword and combine it
with the =tag!=s without any problems.
Getting slices of bytes as a result is not that useful (in this case), but
luckily there is an easy solution.
language—rust,label= ,caption— ,captionpos=b,numbers=none [derive(Debug)]|
enum SyntacticKeyword Else, Arrow, Define, Unquote, UnquoteSplicing,
Expression(ExpressionKeyword)
[derive(Debug)| enum ExpressionKeyword Quote, Lambda, If, Set, Be-
gin, Cond, And, Or, Case, Let, LetStar, LetRec, Do, Delay, Quasiquote
Because we are using {:#7} to output the results, both enums need to
implement the Debug trait. #[derive (Debug)] tells rust to do this for us.
The last step is to change the result type from &[u8] (a slice of bytes) to
SyntacticKeyword or ExpressionKeyword using map! and closures |argl,
arg?2, ...| body.
language—=rust,label= ,caption= ,captionpos=b,numbers=none named!(
syntacticyeyword < SyntacticK eyword >, alt!(map!(expressiongeyword, |e|SyntacticK eyword ::
Expression(e))|map!(tag!(”else”), || SyntacticK eyword :: Else)|map!(tag!(” =>
"), ||SyntacticK eyword :: Arrow)|map!(tag!(”define”), | SyntacticK eyword ::
De fine)|map!(tag!("unquote”), || SyntacticK eyword :: Unquote)|map!(tag!(” unquote—
splicing”), ||SyntacticK eyword :: UnquoteSplicing)));
named!(expressiongeyword < ExpressionKeyword >, alt!(map!(tag!(” quote”), || Expression K eyu
Quote)|map!(tag!(”lambda”), || ExpressionK eyword :: Lambda)|//...map!(tag!(” quasiquote”), || Expre

Quasiquote)));
The description of map! is accurate but doesn’t help that much. ..

map!: maps a function on the result of a parser
. but its type signature tells the whole story:

language=rust,label= ,caption= ,captionpos=b,numbers=none map!(I
-> [Result<I,0>, O -> P) => I -> IResult<I, P>

Thanks to tag! we already have parsers with the type signature &[u8]
-> IResult<&[u8], &[u8]> and want syntactic_keyword to be a parser
with the type signature &[u8] -> IResult<&[u8], SyntacticKeyword>
("try to parse a slice of bytes and ideally return a SyntacticKeyword").
This is exactly what map! does, the only missing piece is the second
argument, a function 0 -> P, in our case &[u8] -> SyntacticKeyworJﬂ
In most cases we don’t need the value for 0 because the result doesn’t
depend on it, so we can "throw it away" with the _ placeholder.
The one special case is
language=rust,label= ,caption= ,captionpos=b,numbers=none map!(expressiongeyword, |e|Syntac
Expression(e))
expression_keyword where we need to wrap the resulting ExpressionKeyword
in a SyntacticKeyword: :Expression(...).
Because combining map! and alt! is so common, there is a special
syntax for alt! with a builtin map!:
language=rust,label= ,caption= ,captionpos=b,numbers=none named!(
syntacticgeyword < SyntacticK eyword >, alt.omplete!(expressiongeyword =>
le|SyntacticK eyword :: Expression(e)|tag!(”else”) => | SyntacticKeyword :: Elseltag!(” =>
) => ||SyntacticKeyword :: Arrowl|tag!(”de fine”) => | SyntacticKeyword :: Defineltag!(” unquote
splicing”) => || SyntacticK eyword :: UnquoteSplicing|tag!(” unquote”) =>
||SyntacticK eyword :: Unquote));

4.2 Problem 1: Early Returns

Playing around with the REPL quickly leads to some unexpected results:

>> else
Parsed Done([], Else)
>> =>
Parsed Done([], Arrow)
>> let
Parsed Done(
1,
Expression(Let)
)
>> letrec
Parsed Done(
[114, 101, 99],
Expression(Let)

20r &[u8] -> Expressionkeyword for expression_keyword

>>

"letrec" parses to Expression(Let) with [114, 101, 99] ("rec") as re-
maining input?
Remember the documentation for alt!:
[...] return the result of the first successful one |...]
Done with some remaining input still counts as "successful" so alt!
doesn’t even try out the alternative for "letrec". There is a similar prob-
lem for "let" / "let*" and "unquote" / "unquote-splicing".
An easy fix is to change the order inside alt! so that the longest versions
come first.
language—rust,label= ,caption= ,captionpos=b,numbers=none named!(
syntacticgeyword < SyntacticK eyword >, alt!(//...tag!(” unquote—splicing”) =>
||SyntacticK eyword :: UnquoteSplicing)|tag!("unquote”) => | |SyntacticKeyword :: Unquote)));
named!(expressiongeyword < ExpressionKeyword >, alt!(//...tag!("letrec’) =>
|| ExpressionKeyword :: LetRec)|tag!("let«") => | ExpressionKeyword :: LetStar)|tag!("let”) =>
|| ExpressionKeyword :: Let)|//...))

4.3 Problem 2: Incomplete

>> letrec
Parsed Done(

(1,
Expression(LetRec)
)
>> let*
Parsed Done(
1,
Expression(LetStar)
)
>> let
Parsed Incomplete(Size(6))
>>

We successfully fixed "let*" and "letrec" but now "let" won’t work be-
cause the "letrec" branch sees it, starts to parse it, notices it is incomplete
and alt! happily returns that as a result.

Again there is an easy solution:

alt_complete!: is equivalent to the alt! combinator, except
that it will not return Incomplete when one of the constituting
parsers returns Incomplete. Instead, it will try the next alter-
native in the chain.

The same problem is hidden in syntactic_keyword, too, so we need to
change both alt! to alt_complete.

language—=rust,label= caption— ,captionpos=b,numbers—none named!(
syntacticyeyword < SyntacticK eyword >, alt.omplete!(//...));

named!(expressiongeyword < ExpressionKeyword >, alt.omplete!(//...))

>> let
Parsed Done(

1,
Expression(Let)

)

>> letrec

Parsed Done(
(1,
Expression(LetRec)

)

>> letx

Parsed Done(
1,
Expression(LetStar)

)

>> le

Parsed Error(Alt)

>>

CTRL-C

4.4 Conclusion

Our parser is now able to parse all the scheme keywords (syntactic or ex-
pression) which is a good start.

There is one small problem left, it might be hard to spot because it only
affects the way parsing errors are reported. After switching to alt_complete!,
the result no longer contains the information if the parser failed because the
input was incomplete or if there simply was no matching parser which might
be useful for reporting parser errors later on.

5 Integers

5.1 Mapping over Results

Nom works with slices of bytes (&[u8]) so we need some way to convert these
to strings and then parse them into integers.

Rust already provides a method for the first part: [std: :str::from_utf8l

It’s type signature looks like this:

language—rust,label= ,caption= ,captionpos=b,numbers=none [u8] ->
Result<str, Utf8Error>

We need is convert & [u8] -> &str, what is up with that Result<> thingy
around it?

The problem is that there are some byte sequences that are not valid as
UTF-8 sequences.

If our string is just made up of bytes from 0 to 127 (ASCII), everything
works fine.

language=rust,label= ,caption= ,captionpos=b,numbers=none fn main()
let input = [49, 50, 51|; // ASCII for "123" println!(":?", std::str::from,t f8(input)); // =>
Ok(7123”)

255 is a valid byte value but must not appear in a sequence.

language=rust,label= ,caption= ,captionpos=b,numbers=none fn main()
let input = [49, 50, 51, 255]; println!(":?", std::str::from,t f8(input)); // =>
Err(Utf8Errorvalid,pio : 3, errorien : Some(1))

There are a ton of other cases where parsing bytes to a string could go
wrong, but the one above has to do for now. ..

Now that we know why there is a Result<> around the stuff we want,
how do we use from_utf8 with nom? map! from won’t work and
using .unwrap() or .expect() would be very inelegant.

The solution is surprisingly simple, nom already includes a variation of
map! that works with functions that return Result=s and =nom::digit, a
parser that recognizes one or more of the characters '0’...°9’.

language=rust,label= caption= ,captionpos=b,numbers=none named!(
integer<str>, map,es!(nom :: digit, std :: str :: from,tf8));

5.2 Parsing Integers

Of course &str is not what we really want, we still need to parse it to one
of the integer types, for now just i64.

https://doc.rust-lang.org/std/str/fn.from_utf8.html
https://en.wikipedia.org/wiki/UTF-8

One way to do this is to use str.parse: :<i64>()E| which returns a
Result, too, so we need to use map_res! again.

language—rust,label= ,caption= ,captionpos=b,numbers=none named!(
integer<i64>, map,es!(mapyes!(nom :: digit, std :: str = from,tf8),|s :
str|s.parse :< 64 > ()));

Rust seems to have a hard time figuring out the type of s inside the
closure (for good reasons, I am sure), so we need set it to &str by hand.

To try out our new parser, just change the parse() function from
to use it instead of syntactic_keyword.

language=rust,label= ,caption= ,captionpos=b,numbers=none fn parse(line:
str) // let res = syntacticyeyword(line.aspytes()); letres = integer(line.aspytes()); printin!(” Parsed:?

Valid values for 164 range from

_963

to
263 _ 1

EL so an easy way to see how map_res! handles errors would be to use

263

or higher as input.

>> 1

Parsed Done([], 1)

>> 2

Parsed Done([], 2)

>> 3

Parsed Done([], 3)

>> 0004

Parsed Done([], 4)

>> 9223372036854775808

Parsed Error(MapRes)https://www.youtube.com/watch?v=;e8UCmQ45h4

Funfact, this piece of code panics for the same reason:

language—rust,label= ,caption— ,captionpos=b,numbers=none fn main()
println!(":?", std::164::MIN); println!(":?", -std::i64::MIN); //-9223372036854775808
// thread 'main’ panicked at ’attempt to negate with overflow’, ...

3::<i64> is an alternative way of defining which type we want to parse to, usually this
is already set by the type of the variable in a assignment, e.g. =let res: 164 = str.parse()=

41f you are wondering why the range is assymetric, take a look at how two’s complement
is defined.

10

https://en.wikipedia.org/wiki/Two%27s_complement

5.3 Processing Signs

As a last step, we’ll add support for signed integers (like -42). To do that,
we need some way to express "An optional ’-’ followed by one or more digits"
as a parser.

opt! (parser) makes parser optional, so opt! (tag("-")) gives us the
first part and we already know that nom: :digit matches one or more digits,
the only thing missing is some way to chain them together.

do_parse! (opt!(tag"-") » digit » ()) creates a parser that matches
the desired pattern and returns () (no result).

The last piece of the puzzle is recognize! (parser) which returns the
input if its child parser was successful.

Putting all of them together, get:

language=rust,label= ,caption= ,captionpos=b,numbers=none // Top
of the file use nom::digit;

// .

named!(integer<i64>, map,es!(map,es!(recognize!(doparse!(opt!(tag!(” —
")) >> digit >> ())), std :: str :: fromytf8),|s : str|s.parse ::< i64 > ()));

nom has a problem recognizing module paths inside macros|, sonom: :digit
won’t work inside the do_parse!.

Most of the macros take parsers as inputs and return parsers, so we can
make our parser less messy by creating a special integer_literal parser.

language=rust,label= caption= ,captionpos=b,numbers=none named!(
integerjiteral, recognize!(doparse!(opt!(tag!(” — 7)) >> digit >> ())));

named!(integer<i64>, map,es!(map,es!(integerjiteral, std :: str :: from,tf8),|s :
str|s.parse :< 164 > ()));

>> -123

Parsed Done([], -123)
>> -0

Parsed Done([], 0)

>> 0

Parsed Done([], 0)

>> 123

Parsed Done([], 123)
>>

This has to do for now, in the next part I'll try to handle binary, octal
and hex numbers.

11

https://github.com/Geal/nom/issues/527

5.4 Spec

In addition to decimal integers like those we handled in R5RS|includes
literals for binary, octal and hexadecimal numbers.

e #b11l (binary)

e #d19

(

e #017 (octal)
(decimal)
(

e #xaf (hexadecimal)

They are made up of a radix specifier (#b, #o, #d, #x, none), a sign
(+, -, none) and a non-empty sequence of digits with given radix.

If there is no radix specifier, the default radix is 10 and if there is no
sign, the integer is positive (obviously).

5.5 Digit Sequences

In the last part, we used nom: :digit to match sequences of decimal digits.
There are two other variants of this, nom: :oct_digit and nom: :hex_digit.
Sadly there is no bin_digit so we need to write it ourselves.

Looking through the list of nom macros, one might assume something
like many1! (one_of!("01")) would be a good to do so, but many1!(...)
returns a list of results instead of just a matching sequence of bytes.

take_while! sounds more like what we want and has a variant that only
matches sequences that are non-empty:

[...] returns the longest list of bytes for which the function is
true. |[...]

The signature of take_while! looks like this:
language=rust,label= ,caption= ,captionpos=b,numbers=none take,hile!(T— >
bool) => [T]— > IResult < [T],[T] >
We are working with byte slices, so T is u8, so what we need is a function
that takes a u8 byte and returns true iff] it is a binary digit.
language=rust,label= ,caption= ,captionpos=b,numbers=none fn isyingigit(char :
u8)— > bool /| Just'0'wouldbeachar, / /puttingbin frontmarksitasabytechar == b'0/||char == b1’
Now we can build our own bin_digit parser:
language—rust,label= ,caption— ,captionpos=b,numbers=none named!(bingigit, take, hilel!(isying

12

http://www.schemers.org/Documents/Standards/R5RS/r5rs.pdf
https://en.wikipedia.org/wiki/If_and_only_if

5.6 More Signs

In addition to -, + can be used as a sign, too, so we need a way to handle
this.

To keep the integers parsers as dry| as possible, we’ll extract this into its
own parser:

language=rust,label= ,caption= ,captionpos=b,numbers=none named!(sign,

recognize! (opt!(one, f1(” + =7))));
The only new thing here is one_of ! (str). According to the|docs, it ...

matches one of the provided characters. one_of! ("abc")
could recognize ’a’, 'b’, or 'c’.

Just using opt! (one_of ! ("+-")) would lead to problems once we use it

inside of do_parse! (sign » digit » ()), because it’s return type (Option<. .

is different, so we have to wrap recognize! around it to get a sequence of
bytes instead.

5.7 Parsing Numbers with Radix

Next we need some way to parse these digit sequences. str: :parse: :<i64>()
won’t do this time, because there is no way to tell it which radix (2, 8, 10 or
16) to use.

Instead, we can use |i64: :from_str_radix(src: &str, radix: u32)
which returns a Result, too, so we can just swap the two functions inside
the map_res! from

Doing this for all new variants (and for decimal integers, to keep things
consistent) we can build new parsers integer_literal2, integer_literal8,
..., that match sequences signed binary, octal, decimal and hexadecimal
numbers.

language=rust,label= ,caption= ,captionpos=b,numbers=none // Top
of the file use nom::digit, octgigit, hexqigit;

named!(integer;iteral2, recognize!(doparse!(sign >> bingigit >> ())))

named!(integer;iteral8, recognize!(doparse!(sign >> octgigit >> ())))

named!(integer;iterall0, recognize!(doparse!(sign >> digit >> ())));
named!(integer;iterall6, recognize!(doparse!(sign >> hexqigit >> (

And based on that, some new parsers that return =i64=s. ..

language=rust,label= caption—= ,captionpos=b,numbers=none named!(

)
I

N);

.>)

integer2<i64>, map,es!(map,es!(integerjiteral2, std :: str :: from,tf8),|s|i64 :

fromstrradiz(s, 2)));

13

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://docs.rs/nom/3.2.0/nom/#sequence-combinators
https://doc.rust-lang.org/std/primitive.i64.html#method.from_str_radix

named!(integer8<i64>, map,es!(map es!(integerjiteral8,std :: str ::
from,tf8),|s|i64 :: fromstrradiz(s,8)));

named!(integer10<i64>, map,es!(mapres!(integeriterall0, std :: str :
fromytf8),|s|i64 :: fromstrradiz(s,10)));

named!(integer16<i64>, map,es!(mapes!(integer;iterall6, std :: str :
fromytf8),|s|i64 :: fromstrradiz(s,16)));

Finally, we need to combine all the parsers above into one parser that
can handle all kinds of integers, choosing one of the subparsers depending
on the numbers radix specifier.

nom provides an elegant way to do this, preceded! takes two parsers,
tries to apply the first one and then returns the result of second one.

Remember that #d is optional, so we have to use opt! there.

language=rust,label= caption—= ,captionpos=b,numbers—=none named!(
integer<i64>, alt!(preceded!(tag!("b"), integer2) | preceded!(tag!("o"), inte-
ger8) | preceded!(opt!(tag!("d")), integer10) | preceded!(tag!("x"), integer16)
));

Now fire up the REPL to check if everything works as expected:

>> 123

Parsed Done([], 123)
>> +123

Parsed Done([], 123)
>> #x+FF

Parsed Done([], 255)
>> #x+Ff

Parsed Done([], 255)
>> #b101010

Parsed Done([], 42)
>> #oFF

Parsed Error (Alt)

There is a lot of code duplication going on above but I don’t want to get
into macros just now, so let’s call it a day.

6 Booleans

In R5RS| there are two boolean literals, #t for true and #f for false.
With our newly aquired nom skills, this should be easy:

14

http://www.schemers.org/Documents/Standards/R5RS/r5rs.pdf
file:///lisp/2017/09/07/lisp-parsing-3.html

language—rust,label= caption= ,captionpos=b,numbers—=none // We
can’t name this parser bool because that is a registered keyword in rust
named!(boolean<bool>, alt!(tag!("t") => [jtrueltag!(” ") => | false));

7 Chars
Chars are not that complex either, there are just three cases to handle:

e #\space as alias for >
e #\newline as alias for ’\n’

e #\<any char>

All of these cases begin with #\, so preceded! (tag! ("#\\"), ...) would
be a good start.

language=rust,label= ,caption= ,captionpos=b,numbers=none // Top
of the file, // all the digits are needed for the number parsers from earlier
parts use nom::digit, octgyigit, hexgigit, anychar;

named!(character<char>, preceded!(tag!("
"), altcomplete!(tag!(” space”) => H')]tag!(”newline” => ”’]anychar)));

For the first two cases, we just match on the names with tag! and use
the => syntax to return the right char. The third case is surprisingly easy
as well because nom: :anychar does exactly what we want: to match any
character and return a char.

Again we need to use alt_complete! instead of alt! and put anychar
at the end of the chain, otherwise #\space would get parsed as #\s or #\s
as an Incomplete #\space.

8 Combining Types

At the end we want to have a parser that can handle all kinds of scheme
values and returns some wrapper type.
For now, there are just four cases to handle:

1. Keywords, from Part 1
2. Numbers, from Part 2 & 3

3. Booleans

15

4. Characters

language—rust,label= ,caption— ,captionpos=b,numbers=none [derive(Debug)]|
enum Token Keyword(SyntacticKeyword), Number(i64), Boolean(bool), Char-
acter(char),

In addition to that new wrapper type, we need a new parser that com-
bines the parsers for all types and wraps the results in the corresponding
Token type.

language—rust,label= ,caption= ,captionpos=b,numbers=none named!(
token<Token >, alt!(syntacticyeyword => |kw|Token :: Keyword(kw)|integer =>
|i|Token :: Number(i)|boolean => |b|Token :: Boolean(b)|character => |c|Token :: Character(c)));

language=rust,label= ,caption= ,captionpos=b,numbers=none fn parse(line:
str) let res = token(line.aspytes()); printin!(” Parsed:?” res);

9 Testing

An assertion might look like this:
language—rust,label= ,caption— ,captionpos=b,numbers=none assert.q!(boolean(”t”.aspytes()), no:
I Result :: Done(b””][..], true)); assert.q!(boolean(” f” .aspytes()), nom :: I Result ::
Done(b””]..], false));
There is a lot of boilerplate code because the input has to be a &[u8],
not &str and we expect our input to be parsed fully, so the first part of Done
is an empty &[u8] (which we get by &b""[..]).
A nice fix is to write a macro that takes the parts we care about (parser,
input string, output value) and fills in the rest:
language=rust,label= ,caption= ,captionpos=b,numbers=none macro,uleslassertyarsedsully(pars
input : expr,result:expr) => assert.q!(parser(input.aspytes()), nom :: I Result ::
Done(b"”]..],result));
Now we can write tests in a much cleaner way:
language—rust,label= ,caption= ,captionpos=b,numbers=none |[test| //
This marks functions as unit tests, they can be run with ‘cargo test‘ fn
testpool()assertparsedgully!(boolean,”t” true); assertyarsed pully!(boolean,” f”, false);
[test] fn test.haracter()assertyarsed pully!(character,” space”"); assertparsed sully! (character,” n
[test] fn test;nteger()assertyarsed pully!(integer,” 17, 1); assertyarsed pully!(integer,”d 4+ 17, 1); as:
In order to use assert_eq! on Token=s, we need to define a way to
test if two of them are equal, formalized in the =PartialEq trait.
We won’t use Eq here, because in the future there might be some tokens
(e.g. =NaN=) where the equivalence relation is not reflexive (v ! v= for
some token v).

16

https://doc.rust-lang.org/1.7.0/book/macros.html
https://en.wikipedia.org/wiki/Equivalence_relation

Just like the Display trait, we can make rust derive PartialEq automat-
ically by adding it in the #[derive(...)] above Token, SyntacticKeyword
and ExpressionKeyword.
language=rust,label= ,caption= ,captionpos=b,numbers=none [derive(Debug,
PartialEq)| enum Token // ..
Now assert_parsed_fully! works for tokens, too.
language=rust,label= ,caption= ,captionpos=b,numbers=none |[test| fn
testioken()assertyarsed pully!(token,”1”, Token :: Number(1)); assertyarsed pully!(token,” else”, Tok
I’ll leave coming up with more test cases as an exercise for the reader. If
you find a case that does not work as expected, feel free to open up an [issue.

10 Strings

The R5RS| spec for strings is pretty simple, but in addition to that, support
for \n, \r and \t would be nice.

<string> - " <string element>x "
<string element> - <any character other than " or \ > | \" | \\

nom seems to have two options to handle escaped strings:

e escaped!

e escaped_transform!

Let’s use the later one, because the example code already does 80% of
what we want.

language=rust,label= ,caption= ,captionpos=b,numbers=none fn tos(i :
Vec < u8 >)— > StringString :: from,tf8 o0ssy(i).into,wned()

named!(stringcontent < String >, map!(escapedirans form!(takeyntileither! ()’ alt!(tag!(””) =

The only changes are to use take_until_either! ("\"\\") to matche
any characters until either a \ or a " appears instead of alpha and add
support for \r and \t.

Based on this parser for stuff inside the ", next we need a way to make
sure there are "=s around our strings. =delimited! is similar to the
earlier preceded! and does just that, it takes three parsers

e opening delimiter
e body

e closing delimiter

17

https://github.com/l3kn/r5rs-parser/issues
http://www.schemers.org/Documents/Standards/R5RS/r5rs.pdf
http://rust.unhandledexpression.com/nom/macro.escaped.html
http://rust.unhandledexpression.com/nom/macro.escaped_transform.html

and returns only the result for the body.

language=rust,label= ,caption= ,captionpos=b,numbers=none named!(string<String>,
delimited!(tag!(""), string.ontent, tag!("Z)));

Now we only need to add a string type to the Token enum, the string
parser to the token parser and everything should work fine.

language=rust,label= ,caption= ,captionpos=b,numbers=none [derive(Debug,
PartialEq)| enum Token Keyword(SyntacticKeyword), Number(i64), Boolean(bool),
Character(char), String(String),

named!(token<Token>, alt!(syntacticyeyword => |kw|Token :: Keyword(kw)|integer =>
|i|Token :: Number(i)|boolean => |b|Token :: Boolean(b)|character => |c|Token :: Character(c)|stri
|s|Token :: String(s)));

>> '"seems to work"

Parsed Done([], String("seems to work"))

>> "test123 \n\t\r\"\"\\"

Parsed Done([], String("test123 \n\t\r\"\"\\"))
>>

11 Identifiers

We’re making good progress, booleans, numbers (in a simplified form), char-
acters and strings already work, the only missing part is a parser for identi-
fiers.
You might ask "But what about the keyword parser from [Part 1J'?
Turns out, we don’t even need it for the token parser, but it will come
in handy once we start to parse expressions.

<token> -
<identifier> |
<boolean> |
<number> |
<character> |
<string> |

Cly r#C1I> 00,1 .,e]

11.1 Peculiar Identifiers

Let’s start with something simple, "peculiar identifiers":
language—rust,label= ,caption= ,captionpos=b,numbers—=none named!(peculiar;dentifier, alt!(tag!
77)’ta/g!(77 _ 77)‘tag!(77 ...77)));

18

named!(identifier<String>, map!(peculiar;denti fier, |s|String :: from,tf80ssy(s).into,wned()));
A combination of alt! and tag! matches each of the peculiar identifiers
and we can use the same method as in the to_s function from earlier to
convert &[u8] to String.
Next we need add a Identifier type to the Token enum and parser.
Note that I removed the Keyword type, too.
language=rust,label= ,caption= ,captionpos=b,numbers=none [derive(Debug,
PartialEq)| enum Token Number(i64), Boolean(bool), Character(char), String(String),
Identifier(String),
named!(token<Token>, alt.omplete!(integer => |i|Token :: Number(i)|boolean =>
|b|T'oken :: Boolean(b)|character => |c|Token :: Character(c)|string =>
|s|T'oken :: String(s)|identifier => |s|Token :: Identifier(s)));
Again it’s important to use alt_complete! instead of alt! to avoid
conflicts between the number +1 and the identifier +.

11.2 "Common" Identifiers

First we need some helper classes to match the different groups of characters.
We can’t use nom: :digit or nom: :alpha here because they match multiple
characters while we only want to match a single one.

language=rust,label= ,caption= ,captionpos=b,numbers=none named!(letter<char>,
one, f1(” abede f ghijklmnopqrstuvwzyz”)); named!(singlegigit < char >, one, f!1(70123456789”)); nam
char >, one, f!(”Inamed!(specialsubsequent < char >, one, f1(” + —.@"));

I’'m sure there is a more elegant way to do this but one_of! with a string
of all characters is good enough for now. The result of these parsers is char,
not &[u8] so we need to explicitely annotate their type.

Like in we can use a combination of recognize! and do_parse!
to match "common" identifiers:

language=rust,label= caption—= ,captionpos=b,numbers—=none named!(
common,denti fier, recognize!(doparse!(initial >> many0!(subsequent) >>
O));

Finally change identifier to support both types:

language=rust,label= caption= ,captionpos=b,numbers=none named!(
identifier<String>, map!(alt!(peculiar;denti fier|common;dentifier), |s|String ::
fromytf8i0ssy(s).into,wned()));

And add the remaining tokens:

language=rust,label= ,caption= ,captionpos=b,numbers=none [derive(Debug,
PartialEq)| enum Token Number(i64), Boolean(bool), Character(char), String(String),
Identifier(String), LBracket, RBracket, HashBracket, Quote, Quasiquote,
Unquote, UnquoteSplicing, Dot

19

named!(token<Token >, altcomplete!(integer => |i|Token :: Number(i)|boolean =>
|b|Token :: Boolean(b)|character => |c|Token :: Character(c)|string =>
|s|Token :: String(s)|identifier => |s|Token :: Identifier(s)|tag!(” (") =>
||T'oken :: LBracket|tag!(”)") => || Token :: RBracket|tag!(”(") => || Token :: HashBracket|tag!(""”
|| T'oken :: Quoteltag!(””) => || Token :: Quasiquotel|tag!(”, Q") => || Token :: UnquoteSplicing|tag!(”
|| T'oken :: Unquote(tag!(”.”) => || Token :: Dot));

A quick test shows that everything works as expected and there don’t
seem to be any strange conflicts between identifiers and numbers:

>> test

Parsed Done([], Identifier("test"))
>> +1

Parsed Done([], Number(1))

>> +

Parsed Done([], Identifier("+"))

>> ..

Parsed Done([], Identifier("..."))
>> $fo00123

Parsed Done([], Identifier("$foo123"))
>>

Parsed Done([], Dot)

>> (

Parsed Done([], LBracket)

>> #(

Parsed Done([], HashBracket)

>>

This was easier than I expected, but I’'m sure things will get more exiting
once we start parsing expressions.
Full source code: 13kn /rbrs-parser.

20

https://github.com/l3kn/r5rs-parser/tree/step4/src/main.rs

	Update, 2018-12-11
	Introduction
	Setup
	Keywords
	Integers
	Booleans
	Chars
	Combining Types
	Testing
	Strings
	Identifiers

