
Infinite Prime Sieve in Lisp

Leon Rische

[2017-09-01 Fri 15:48]

Contents

1 Setup 1

2 Basic Syntax 1

3 Special Forms 2

4 Promises 3

5 Lists and Streams 3

6 Working with Streams 4

7 Fibonacci Numbers 5

8 Filtering Streams 6

9 An Infinite Prime Sieve 7

1 Setup

The code examples are written in a lisp I’m working on.
To try it out, clone the git repo, make sure rust is installed and run cargo

run repl to get an interactive REPL or cargo run run example.scm to
evaluate a file.

2 Basic Syntax

• Booleans: true and false

1

https://github.com/l3kn/EulerLisp

• The empty List: nil or ’() or (list) (they are pretty much equiva-
lent)

• (def a 1) defines a variable named a with a value of 1.

• (set! a 2) overwrites a with 2

• (fn (n div) (0 (% n div))= creates an anonymous function = with
two arguments n and div that checks if n is divisible by div.

• (defn name (arg1 arg2) body) is syntax sugar for (def name (fn
(arg1 arg2) body)) and can be used to define named functions

• (cons 1 2) creates a pair of two values

• (if test consequent alternative) is equivalent to if (test) { consequent
} else {alternative } in other languages

• (do expr1 expr2 ...) evaluates each of the arguments and returns
the result of the last one. It can be used to do more than one thing
inside the consequent of an if etc.

• (inc n) and (dec n) are equiv. to (+ n 1) and (- n 1)

• fst and rst ("first" and "rest") are equivalent to car and cdr in
languages like Chicken Scheme and can be used to access the first and
second element of a cons pair

• print and println print values on the screen, without or with a new-
line

3 Special Forms

Given an expression like (println (+ 1 2)) the ’normal’ way (in a language
that is not lazily evaluated) to treat it would be to evaluate all elements
(println to a function reference, (+ 1 2) to 3) and then apply the rest of
the elements to the first.

This is good enough most times, but consider this example:
language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn un-

less (test consequent alternative) (if test alternative consequent))
Looks pretty harmless, but what happens if we try to use it like this?
language=Lisp,label= ,caption= ,captionpos=b,numbers=none (def n

5) (unless (= 0 ((println "n is odd") (println "n is even"))
The result will be something like

2

https://www.call-cc.org/

n is odd
n is even
=> undefined (ignored by the repl)

With the ’normal’ way of evaluating expressions, the first step would be
to evaluate (= 0 (% n 2)) to true, (println "n is odd") to undefined
(because it does not return anything useful) and (println "n is even")
to undefined, too.

The remaining expression is (if true undefined undefined) and that
evaluates to undefined.

To avoid this, unless (and some other syntax constructs like if, delay)
must be implemented as special forms.

Simplified this means they are called with ’raw’, unevaluated arguments
and can choose when (and if) to evaluate them themselves.

An implementation of unless as special form would need to evaluate the
test first and then, depending on the result, evaluate either the consequent
or the alternative.

4 Promises

delay and force can be used to delay the evaluation of an expression.
A naive implementation would be to (defn delay (body) (fn () body))

(just wrap an anonymous function around the body) and (defn force (promise)
(promise)) (call the underlying lambda).

Because of the reasons described in the section above, this would not
work as intended, delay needs to be a special form.

One other idiosyncracy is that once a promise was forced, it remembers
its value.

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (def a
1) (def promise (delay a)) (set! a 2) (force a) ; => 2 (set! a 3) (force a) ;
=> 2

5 Lists and Streams

In Lisp, lists are built by nesting cons.
(list 1 2 3) is just syntactic sugar for (cons 1 (cons 2 (cons 3 ’()))).

Streams are lazy lists, their elements are computed on demand they can
be infinitely long.

Let’s start with a simple example:

3

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (def ones
(cons 1 ones))

This doesn’t work because at the time the body (cons 1 ones) is being
evaluated, ones is not yet defined in the parent environment.

On the other hand,
language=Lisp,label= ,caption= ,captionpos=b,numbers=none (def ones

(cons 1 (delay ones)))
works perfectly fine, because the evaluation of ones in the cons is being

delayed until we actually access it (and evaluating def is completed).
language=Lisp,label= ,caption= ,captionpos=b,numbers=none (fst ones)

; => 1 (rst ones) ; => promise(?), a promise that has not yet been evaluated
(force (rst ones) ; => (1 . promise(?))

To keep the code as simple as possible, I added a special form (stream-cons
foo bar) that is equivalent to (cons foo (delay bar) and a method (stream-rst
stream)1 that forces the rst of stream.

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (def ones
(stream-cons 1 ones)) (stream-rst ones) ; => (1 . promise(?))

6 Working with Streams

Before we continue, it would be nice to have some way to display streams
(up to some fixed, finite length).

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn stream-
print (limit stream) (if (> limit 0) (do (println (fst stream)) (stream-print
(dec limit) (stream-rst stream)))))

stream-print checks if the limit is greater than 0, prints the fst of the
stream and calls itself recursively with (dec limit) (limit - 1) and the
forced rst (stream-rst) of the stream.

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (stream-
print 5 ones) ; 1 ; 1 ; 1 ; 1

To do some more interesting things, we need ways to combine and ma-
nipulate streams.

stream-map creates a new stream with the results of applying fun to the
elements of stream.

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn stream-
map (fun stream) (stream-cons (fun (fst stream)) (stream-map fun (stream-
rst stream))))

1There is no need to have something like stream-fst, the fst of the stream is not a
promise.

4

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (stream-
print 4 (stream-map inc ones)) ; 2 ; 2 ; 2 ; 2

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn stream-
combine (fun s1 s2) (stream-cons (fun s1 s2) (stream-combine fun (stream-rst
s1) (stream-rst s2))))

(defn stream-add (s1 s2) (stream-combine + s1 s2))
language=Lisp,label= ,caption= ,captionpos=b,numbers=none (stream-

print 4 (stream-add ones ones)) ; 2 ; 2 ; 2 ; 2
Still pretty boring, how about a stream of natural numbers (excluding

0)?
language=Lisp,label= ,caption= ,captionpos=b,numbers=none (def natural-

numbers (stream-cons 1 (stream-add natural-numbers ones))) (stream-print
4 natural-numbers) ; 1 ; 2 ; 3 ; 4 ; 5

This might be a little hard to understand, especially if you have never
worked with streams or lazy evaluation before.

natural-numbers = 1, (natural-numbers[0] + 1), (natural-numbers[1] + 1), ...

An alternative implementation that might be easier to understand:
language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn natural-

numbers-from (n) (stream-cons n (natural-numbers-from (inc n))))
(def natural-numbers (natural-numbers-from 1))

7 Fibonacci Numbers

The Fibonacci Numbers are defined as

• (fib 0) = 0

• (fib 1) = 1

• (fib n) = (+ (fib (- n 1)) (fib (- n 2)))

This is equivalent to adding the fib stream its rst, a version of itself
that is shifted by one.

0 1 1 2 3 5 8 13 ...
+ _ 0 1 1 2 3 5 8 ...
= 0 1 2 3 5 8 13 21 ...

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (def fibs
(cons-stream 0 (cons-stream 1 (stream-add fibs (stream-rst fibs)))))

(stream-print 10 fibs) ; 0 ; 1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 ; 34

5

https://en.wikipedia.org/wiki/Fibonacci_number

8 Filtering Streams

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn stream-
filter (pred stream) (if (pred (fst stream)) (stream-cons (fst stream) (stream-
filter pred (stream-rst stream))) (stream-filter pred (stream-rst stream))))

Filtering over streams is more involed than map.
If the result of (pred (fst stream)) is true, we construct a new stream
with (fst stream) and the delayed result of filtering the rest of the stream.
Otherwise, we call stream-filter again with the rest of the stream, skipping
fst.

To better understand what is happening when forcing elements of the
filtered stream, let’s build a stream that displays a message when one of its
elements is forced.

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (def debug-
stream (stream-map (fn (n) (do (print "Forcing ") (println n) n)) (natural-
numbers-from 0))) ; Forcing 0

Only one line is being printed, the rest of the new stream will only be
evaluated when we need it.

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn is-
multiple-of (div) (fn (n) (= 0 (

(def multiples-of-five (stream-filter (is-multiple-of 5) debug-stream))
(fst multiples-of-five) ; => 0
No new lines are being printed, the first element 0 is already a multiple

of 5.
When we try to output more elements of the stream, something strange

happens:

(println (fst (stream-rst multiples-of-five)))
; Forcing 1
; Forcing 2
; Forcing 3
; Forcing 4
; Forcing 5
5

stream-filter starts forcing elements of the stream until it finds the
next one that satisfies pred, in this case 5.

6

9 An Infinite Prime Sieve

The Sieve of Erathosthenes works by taking a list of numbers (starting with
2), going to the first element, removing all its multiples from the list (4, 6, 8,
. . .) and then repeating these steps with the next elements in the list (first
3, then 5) over and over again.

Once this process has reached the end of the list, only prime numbers
remain.

Based on (natural-numbers-from 2) we can use the same algorithm to
create a (infinite) stream of primes!

Start with removing all multiples of the first element from a stream:
language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn is-

not-multiple-of (div) (fn (n) (!= 0 (
(defn remove-multiples-of-first (stream) (stream-cons (fst stream) (stream-

filter (is-not-multiple-of (fst stream)) (stream-rst stream))))
(stream-print 6 (remove-multiples-of-first (natural-numbers-from 2))) ; 2

; 3 ; 5 ; 7 ; 9 ; 11 ; 13 ; 15 ; 17 ; 19
We are nearly there, the first few numbers are already primes but 9 is a

multiple of 3, 15 is a multiple of 5, . . .
What is missing is the next step of the algorithm, > . . . and then re-

peating these steps with the next elements in the list > (first 3, then 5) over
and over again.

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn remove-
multiples-of-first (stream) (stream-cons (fst stream) (remove-multiples-of-
first (stream-filter (is-not-multiple-of (fst stream)) (stream-rst stream)))))

(def primes (remove-multiples-of-first (natural-numbers-from 2)))
(stream-print 10 primes) ; 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; 23 ; 29
The change in the code was pretty minor but now remove-multiples-of-first

applies itself recursively to the new, filtered stream, completing the prime
sieve.

To make sure, we can define a method that returns the nth2 element of
a stream and check agains a list of primes.

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn stream-
nth (n stream) (if (= n 0) (fst stream) (stream-nth (dec n) (stream-rst
stream)))) (stream-nth 49 primes) ; => 229, which is in fact the 50th prime

2(stream-nth 49 primes) is the 50th element of the stream because it is 0-indexed

7

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://primes.utm.edu/lists/small/1000.txt

	Setup
	Basic Syntax
	Special Forms
	Promises
	Lists and Streams
	Working with Streams
	Fibonacci Numbers
	Filtering Streams
	An Infinite Prime Sieve

