HyperCard

Leon Rische

[2020-03-31 Tue 00:40]

Contents

Link Dump]

Setup using Mini vMac]

Mounting Images on Linux]|

Mini vMac Hotkeys / Command]

HyperCard Tricks|

HyperTalk|

Useful Code / Functions|

Processing Stack F'iles|

Link Dump

e https://hypercard.org/

e https://hypercard.org/hypercard_file_format_pierre/
e http://hypercardonline.tk/about
e https://blog.archive.org/2017/08/11/hypercard-on-the-archive-celebrating-30-years

e https://archive.org/details/mac_Danny_Goodmans_HyperCard_Developers_
Guide_1988/

e https://ghostlevel.net/logoff/2015/11/11/hypercard-ressources-bookmark/

e https://cancel.fm/hyperjam/


https://hypercard.org/
https://hypercard.org/hypercard_file_format_pierre/
http://hypercardonline.tk/about
https://blog.archive.org/2017/08/11/hypercard-on-the-archive-celebrating-30-years-of-hypercard/
https://archive.org/details/mac_Danny_Goodmans_HyperCard_Developers_Guide_1988/
https://archive.org/details/mac_Danny_Goodmans_HyperCard_Developers_Guide_1988/
https://ghostlevel.net/logoff/2015/11/11/hypercard-ressources-bookmark/
https://cancel.fm/hyperjam/

1.1

1.2

1.3

Hypertalk
http://www.jaedworks.com/hypercard/scripts/hypertalk-bnf.html
https://en.wikipedia.org/wiki/HyperTalk
https://wiki.xxiivv.com/site/hypertalk.html

http://www.jaedworks.com/hypercard/HT-Masters/visual-effects.
html

http://web.csulb.edu/ murdock/hcindex.html| (List of commands
/ functions)

Emulator
https://www.gryphel.com/c/minivmac/

https://www.gryphel.com/c/minivmac/extras/index.html

Videos / Talks
https://vimeo.com/70833521

https://www.youtube.com/watch?v=LVq67vYyAqo
https://www.youtube.com/watch?v=FquNpWdf9vg
https://www.youtube.com/watch?v=8160_REoelY

https://www.youtube.com/watch?v=bdJKjBHCh18

2 Setup using Mini vMac

1.

Download from https://www.gryphel.com/c/minivmac/dnld_std.html
(or build it yourself)

Download a ROM file (e.g. from https://www.macintoshrepository.
org/7038-all-macintosh-roms-68k-ppc-, I'm using mac-plus-3.rom)

Rename the ROM file to vMac.ROM

Download HyperCardBootSystem7 . img image from https://archive.
org/details/HyperCardBootSystem?

Start the emulator ./Mini\ vMac HyperCardBootSystem.img


http://www.jaedworks.com/hypercard/scripts/hypertalk-bnf.html
https://en.wikipedia.org/wiki/HyperTalk
https://wiki.xxiivv.com/site/hypertalk.html
http://www.jaedworks.com/hypercard/HT-Masters/visual-effects.html
http://www.jaedworks.com/hypercard/HT-Masters/visual-effects.html
http://web.csulb.edu/~murdock/hcindex.html
https://www.gryphel.com/c/minivmac/
https://www.gryphel.com/c/minivmac/extras/index.html
https://vimeo.com/70833521
https://www.youtube.com/watch?v=LVq67vYyAqo
https://www.youtube.com/watch?v=FquNpWdf9vg
https://www.youtube.com/watch?v=8i60_REoeIY
https://www.youtube.com/watch?v=bdJKjBHCh18
https://www.gryphel.com/c/minivmac/dnld_std.html
https://www.macintoshrepository.org/7038-all-macintosh-roms-68k-ppc
https://www.macintoshrepository.org/7038-all-macintosh-roms-68k-ppc
https://archive.org/details/HyperCardBootSystem7
https://archive.org/details/HyperCardBootSystem7

3 Mounting Images on Linux
To mount to a folder:

1. sudo losetup --find --show HyperCardBootSystem7.img (returns
the name of a loop device, for me that’s /dev/1loop0)

2. sudo mount /dev/loop0 /mnt
To unmount:
1. sudo losetup -d /dev/loop0

2. sudo umount /mnt

4 Mini vMac Hotkeys / Command

e Ctrl enters the control mode
e H to show help

e M to magnify the screen

5 HyperCard Tricks

e To detach a menu (e.g. "Tools" or "Patterns"), hold and drag it
e Cmd-. to stop execution of script / long running command

e Double-clicking on a pattern in the pattern menu allows editing it

6 HyperTalk
6.1 choose <tool name> tool
Tools:

e browse

e brush

e bucket

e button



e curve
e craser

o field

e lasso

e line

e oval

e pencil

e rectlangle]

e reglular| poly[gon]
e round rect|angle]
o select

e spray

o text

6.2 drag <pos from> to <pos to>

Positions have the form x,y or "x,y" where x and y are numbers.

6.3 repeat with x = 0 to 100 \n ... \n end repeat
6.4 Random Numbers

random(1, 10) generates a random number between 1 and 10 (inclusive)

6.5 Variables
e get <expr>, evaluates <expr> storing the result in it
e put <expr> into <var>, evaluates <expr> storing the result in <var>
e add <expr> to <dest>
e subtract <expr> from <dest>
e multiply <dest> by <expr>

e divide <dest> by <expr>



6.6 Message Handlers / Functions

If you need a return value, use a function. If not, use a message handler
instead.

function replaceStr pattern,newStr,inStr
repeat while pattern is in inStr
put offset(pattern,inStr) into pos
put newStr into character pos to (pos +the length of pattern)-1 of inStr
end repeat
return inStr
end replaceStr

The return value of a function needs to be used as part of an expression,
e.g. put name(argl, arg2) into void.

Message handlers can take arguments, too. They differ from functions in
that they don’t return a value.

See drawRect in the next section for an example.

6.7 Comments

Lines beginning with -- are commented out.

6.8 List Manipulation

Arrays seem to be l-indexed.

language=C,label= ,caption= ,captionpos=b,numbers=none put "1,2"
into list put 3 into item 3 of list — list is now "1,2,3" put item 1 to 2 of list —
prints "1,2" in the message box put "a" into character 2 of list — list is now
1a2,3 put item 1 of pos — prints "1a2" in the message box

In addition to item, character can be used to manipulate strgs.

length(str) is the number of characters in str. Note that strings are
used to represent lists so length("1,2") is 3, not 2.

To get the number of items in 1ist, use the number of items in list

)
6.9 Global Variables

Variables can be shared between elements / cards by declaring them as
global
For example, in a button on one card:



language=C,label= ,caption= ,captionpos=b,numbers=none on mouseUp
global varl, var2 put "Hello" into varl put "World" into var2 end mouseUp

and then, in a button on a different card:

language=C,label= ,caption= ,captionpos=b,numbers=none on mouseUp
global varl, var2 put varl " " var2 end mouseUp

(Note: & concatenates two strings)

7 Useful Code / Functions

7.1 Checking if a string is a digit / number

language=C,label= ,caption= ,captionpos=b,numbers=none function is-
Digit s return offset(s, "0123456789") is not 0 end isDigit

function isNumber s return isDigit(char 1 of s) end isNumber

Note that isNumber only check the first digit.

7.2 Drawing Rectangles

Draw a rectangle filled with pattern p and size (sx,sy) at position (ox,oy)
language=C,label= ,caption= ,captionpos=b,numbers=none on drawRect
0X,0¥,8X,sy,p set filled to true set pattern to p choose rect tool drag from ox,oy
to (ox-+sx),(oy+sy) choose browse tool end drawRect
This function (message handler) can be used like this: drawRect 0,0,100,100,12.
When drawing multiple rectangles, it’s faster to choose rect tool only
once at the start, then reset it to browse at the end.
Patterns are indexed starting from 1 (top left in the pattern menu), the
pattern at the start of the second row has index 2.
Pattern 12 is black.

7.3 Drawing Lines

language=C label= ,caption= ,captionpos=b,numbers=none choose line tool
drag from x1,y1 to x2,y2

7.4 +/- Counter
Use a field named "name" with the default value as content, and two buttons

1. add 1 to the first word of card field "name"

2. subtract 1 from the first word of card field '"name"



8 Processing Stack Files

Stack data is encoded in big endian format.
Using Python’s struct .unpack, we can process the blocks of the file using
struct.unpack(">Icccc", dataloffset:8]) (big endian, 4 bytes size, 4
characters type) until we encounter a "TAIL" block.
Note that a block size includes its 4 byte size and its 4 byte name.

8.1 Reading BMAP Blocks

I've filled a cards background with the grid pattern and extracted the stack
file from the image.
Here’s what the BMAP block looks like:

00001440:
00001450:
00001460:
00001470:
00001480:
00001490:
000014a0:
000014b0:
000014c0:
00001440:
000014e0:
000014£0:
00001500:
00001510:

0000
0000
0000
0000
8283
a784
8482
82a7
a784
8482
82a7
a784
8482
ffff

00e0
0000
0000
0000
8083
82a7
a784
8482
82a7
ar84
8482
82a7
a784
ffff

424d
0001
0156
0000
8083
8482
82a7
a784
8482
82a7
a784
8482
82a7
ffff

4150
0000
0200
0000
8083
a784
8482
82a7
a784
8482
82a7
a784
8482
ffff

0000
0000
0000
0000
8083
82a7
a784
8482
82a7
ar84
8482
82a7
a784
ffff

0fod
0000
0000
0000
8083
8482
82a7
a784
8482
82a7
a784
8482
82ab
ffff

0000
0156
0156
0000
8083
a784
8482
82a7
a784
8482
82a7
a784
84ff
ffff

0000 00e0 4244 4150 0000 0f0d 0000 0000

W N =

. ID, 4 bytes, 0xf0d

4. Filler, 4 bytes

. Size, 4 bytes (224)

. Type, 4 bytes, "BMAP"

0000 0000 0001 0000 4 x 2 bytes, Unknown, here 0, 0, 1, 0

0000 0000 0156 0200, 0000 0000 0156 0200, 0000 0000 0156 0200 top,
left, bottom, right of the card, mask and image rectangles. In this case, each
rectangle has size (512,342) x (512,342)



0000 0000 0000 0000 2 x 4 bytes unknown, usually 0

0000 0000 0000 0090 4 bytes, size of the mask data (0) 4 bytes, size of
the image data (144)

Mask and image data are stored separately to support transparency, using
the mask for white pixels and the image for black pixels.

There is no mask data, so we treat all pixels in the mask as white (1).

At this point, we are at 16 + 8 + 24 4+ 8 + 8 = 64 bytes of data and
we're left with 160 bytes of image data.

It seems like block sizes are rounded to multiples of 16 or 32, so the 0xff
in the last row would be filler data.

Now to the interesting part, decoding the image data:

00001480: 8283 8083 8083 8083 8083 8083 8083 8082
00001490: a784 82a7 8482 a784 82a7 8482 a784 82a7
000014a0: 8482 a784 82a7 8482 a784 82a7 8482 ar784
000014b0: 82a7 8482 a784 82a7 8482 a784 82a7 8482
000014c0: a784 82a7 8482 a784 82a7 8482 a784 82a7
000014d0: 8482 a784 82a7 8482 a784 82a7 8482 a784
000014e0: 82a7 8482 a784 82a7 8482 a784 82a7 8482
000014£0: a784 82a7 8482 a784 82a7 8482 a784 82a7
00001500: 8482 a784 82a7 8482 a784 82ab5 84ff ffff

Before compressing / decompressing the image data, the left side of the
bounding box is rounded down to the nearest multiple of 32, the right side
is rounded up.

Our bounding box is 512 pixels wide, so we don’t need to do any rounding,.

This encoding uses a custom compressed data format.

Each byte encodes 8 pixels of a row , so we need a total of 64 bytes to
encode a full row.

82 Our image starts with 0x82, one black row.

83 8083 8083 8083 8083 8083 8083 80 The next instructions are a
bunch of 0x83 0x80, each filling one row by repeating the byte 0x80 (0b01000000).

Next comes another 82 black row.

a7 repeats the next instruction 7 times, 84 fills one row with a repeated
byte of data previously used, looking up the byte in a 8-byte lookup table
that is updated each time a 83 instruction is encountered.

In our case, this means that 7 rows are filled with repeated 0x80

Next comes another black row and more repeated 0x80.

The combination of a784 is repeated a few more times, ending with a
ab84 when only 5 rows are left to be filled.



At this point, we can see that the background is a grid pattern without
even decoding it.



	Link Dump
	Setup using Mini vMac
	Mounting Images on Linux
	Mini vMac Hotkeys / Command
	HyperCard Tricks
	HyperTalk
	Useful Code / Functions
	Processing Stack Files

