Euler Lisp

Leon Rische
[2019-07-22 Mon 20:14]

Contents

I Motivah 9
2 Data Types| 2
T Buin . 3
4__Resources| 8
5 _ TODO 9
6 Conti . 9

EulerLisp Benchmarks

EulerLisp Language Documentation

EulerLisp VM

EulerLisp Compiler

EulerLisp Object System [incomplete]

A LISP bytecode VM implemented in Rust.

Source code on Github: 13kn/EulerLisp

I always wanted to create my own programming language.

It might be one of the programming projects with the highest floor-to-
ceiling ratio: a |simple interpreter can take up less than a hundred lines of
code, but adding features and improving the speed quickly increases the
complexity, until it reaches the heights of industrial strength compilers like
gce, with millions of lines of code.

eulerlisp_benchmarks.org
eulerlisp_language_documentation.org
eulerlisp_vm.org
file:///home/leon/org/deft/eulerlisp_compiler.org
file:///home/leon/org/website/pages/eulerlisp_object_system.org
https://github.com/l3kn/EulerLisp
http://blog.lrei.org/math-commons/low-floor-high-ceiling-problems/
http://blog.lrei.org/math-commons/low-floor-high-ceiling-problems/
http://www.norvig.com/lispy.html

At around 7k lines of code this project lies somewhere inbetween (at least
on a logarithmic scale).

The language is a Lispl modeled after Scheme and runs on a simple
bytecode-VM, so that it is possible to write non-trivial programs and have
them run at a reasonable speed.

language—=scheme,label= caption= ,captionpos=b,numbers=none (defn
fib (n) (if (<=n 1) n (+ (fib (-n 1)) (fib (- n 2)))))

(println (fib 30))

Of course this is a pretty meaningless benchmark, but on my machine
the recursive fibonacci fuction above takes 1.1s to execute in EulerLisp which
gets makes it between 2x and 10x slower than a few other languages I tested:

e Ruby, 0.11s

e Python, 0.23s

Elixir, 0.48s

Chicken Scheme (interpreted), 0.68s

Chicken Scheme (compiled), 0.07s

C (gee -03), 0.08s

1 Motivation

As an incentive to make the language fast and usable, I'm using it to work
through some Project Euler math problems.

https://projecteuler.net/profile/leonrische.png

Up till now, I’ve solved around 200 of the problems and written around
7k lines of EulerLisp code.

TODO: List of favorite problems

2 Data Types
The main data type is called Datum and has different variants:

e Bool
e Integer (64bit signed)

e Bignum (multiple precision)

https://projecteuler.net
https://projecteuler.net/profile/leonrische.png

Rational (64bit numerator and denominator)

Float (64bit)

Char

String

Symbol (pointer into a symbol table)

Vector

Builtin (reference to a function implemented in rust)
Closure (reference to a function in the target language)

PriorityQueue (for performance reasons, should be implemented in
lisp)

Undefined

Nil

3 Builtin Functions

3.1

3.2

Bitwise

(bitwise-and args*)
(bitwise-or args)
(bitwise-xor args*)

(bitwise-not args)

Comparison

(args™)=, numeric equality

(! a b)=, numeric inequality
(equal? args*), object equality
(< args*)

(< args*)=

3.3

(> args*)
(> args™®)=
(min argsx*)

(max args*)

Lists, Vectors, Pair

(cons a b), create a pair from a and b

(fst p), get the first element of a pair

(rst p), get the second element of a pair
(set-fst! p v), set the first element of a pair
(set-rst! p v), set the second element of a pair

(list args*), create a list, equivalent to (cons argl (cons arg?2
(cons ... (cons argn >()))))

(1ist->vector 1lst)
(permutations 1lst)
(combinations 1lst len)
(sort lst)

(uniq 1st)

(join str 1lst)

(vector args*) create a vector
(vector-ref vec i)
(vector-set! vec i v)
(vector-push! vec v)
(vector-pop! vec)

(vector-shuffle! vec)

(vector-delete! vec i)
(vector-length vec)
(vector->list vec)
(make-vector size [initial])

(vector-copy vec [from] [to])

Numbers, Math

(+ args*)

(- arg), negation

(- args*), subtraction
(x args*)

(/ argsx*)

(% a mod)

(div a mod), integer division

(divmod a mod), the result is a pair (quotient .

(powf n e),

ne
(pow for non-integer exponents)
(sqrt n),

n2
(cbrt n),

ns
(1n a), logarithm base

e
(log2 a), logarithm base

2

remainder)

(logl0 a), logarithm base
10

(log a base)

(ceil a)

(round a)

(floor a)

(» a by), right shift
(« a by), left shift

(popcount a), count the number of
1

s in the binary representation of

(prime? a)

(zero? a)

(number->digits a), list of the digits of a in reverse order
(digits->number 1st)

(number-of-digits a)

(denominator a)

(numerator a)

(sin a), (cos a), (tan a)

(asin a), (atan a), (acos a)

(atan2 a b), four quadrant inverse tangent

(radiants a)

3.5

(totient a), (totient-sum a),

and

(modexp b e n),
b mod n

(modular-inverse b n), inverse of
b

modulo
n

(extended-euclidian a b), a list

(cde)
, o that
ca + db = d = ged(a,b)
(prime-factors a), prime factors of a as a list of pairs (p . e)

(num-prime-factors a), number of prime factors of a
(primes n), a list of the first n primes

(rand from to), random number in

[from,to]

Bignum
(bignum n), convert n to a bignum

(digits->bignum digits), create a bignum from a list of digits (in
reverse order)

(bignum-chunks bn), base 10° "digits" of the bignum

(chunks->bignum bn), create a bignum from a list of chunks

3.6 Input / Output
TODO

3.7 String
TODO

3.8 Types
TODO

4 Resources

If this inspired you to start building your own programming language, here
are some resources that helped me:

4.1 Background
e The Roots of Lisp

4.2 Algorithms & Data Structures

e The Art of Computer Programming

e Introduction to Algorithms

4.3 Implementation

e Lisp In Small Pieces

4.4 Specs
e R5RS

e R6RS
e R7RS

e The Scheme Programming Language

http://paulgraham.com/rootsoflisp.html
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://mitpress.mit.edu/books/introduction-algorithms
https://www.cambridge.org/core/books/lisp-in-small-pieces/66FD2BE3EDDDC68CA87D652C82CF849E
http://www.schemers.org/Documents/Standards/R5RS/
http://www.r6rs.org/
https://bitbucket.org/cowan/r7rs-wg1-infra/src/default/R7RSHomePage.md?fileviewer=file-view-default
https://www.scheme.com/tspl4/

5 TODO

5.1 Garbage Collection

Currently I'm using rusts reference counted pointers Rc and RefCell as a
substitute for implementing my own garbage collection.

This works fine in most cases, but because Scheme allows creating circular
lists it it possible to create objects that are not reachable by some root but
have non-zero reference counts.

language=scheme,label= caption= ,captionpos=b,numbers=none (defn
fill-memory () (let ((circular (cons 1 2))) (set-rst! circular circular)) (fill-
memory))

(fill-memory)

In the future it would be nice to write my own simple garbage collector.

6 Continuations

Continuations capture the remaining parts of a computation.
The VM maintains the following state components:

e val register

e fun register

e argl register

e arg? register

e env

e env stack

e stack

e program counter (through a Bytecode struct)

e program counter stack (through a Bytecode struct)

call-with-current-continuation (often abbreviated as call/cc) cap-
tures the current evaluation context and turns it into an object that can be
called.

(call/cc f) allocates an activation frame, fills it with an object rep-
resenting the current continuation and then calls the £ with this activation
frame.

We can ignore the registers, they are not saved in any function call. The
program counter can be ignored, too, as it is restored by the RETURN in the
body of function f.

Continuation invocation works by restoring the stack, setting val to the
value the continuation was called with and then continuing to run the pro-
gram.

language=Lisp,label= ,caption= ,captionpos=b,numbers=none (defn f
(cont) (cont 2) 3)

(println (f id)) (println (call/cc f))

CREATE-CLOSURE 1

JUMP @510

PUSH-SHALLOW-ARGUMENT-REF 0
PUSH-CONSTANT $2

FUNCTION-INVOKE tail: false, arity: 1
RESTORE-ENV

CONSTANT $3

RETURN

510:
GLOBAL-SET g322
// (set! £ ...)

PUSH-CHECKED-GLOBAL-REF println
PUSH-CHECKED-GLOBAL-REF g322
PUSH-CHECKED-GLOBAL-REF g236
FUNCTION-INVOKE tail: false, arity: 1
// call (£ id)

RESTORE-ENV

PUSH-VALUE

FUNCTION-INVOKE tail: false, arity: 1
// call (println res)

RESTORE-ENV

PUSH-CHECKED-GLOBAL-REF println
CHECKED-GLOBAL-REF g322

// load ‘f¢ closure into val

CALL-CC

// call ‘f¢ with current continuation as argument
PUSH-VALUE

FUNCTION-INVOKE tail: true, arity: 1

When FUNCTION-INVOKE in the closure is called on the continuation,

10

TODO: Call/cc as builtin function, so that I can use it in map

11

	Motivation
	Data Types
	Builtin Functions
	Resources
	TODO
	Continuations

